Abstract

The Flavivirus genus contains some of the most prevalent vector-borne viruses, such as the dengue, Zika and yellow fever viruses that cause devastating diseases in humans. However, the insect-specific clade of flaviviruses is restricted to mosquito hosts, albeit they have retained the general features of the genus, such as genome structure and replication. The interactions between insect-specific flaviviruses (ISFs) and their mosquito hosts are largely unknown. Pathogenic flaviviruses are known to modulate host-derived microRNAs (miRNAs), a class of non-coding RNAs that are important in controlling gene expression. Alterations in miRNAs may represent changes in host gene expression and promote understanding of virus-host interactions. The role of miRNAs in ISF-mosquito interactions is largely unknown. A recently discovered Australian ISF, Palm Creek virus (PCV), has the ability to suppress medically relevant flaviviruses. Here, we investigated the potential involvement of miRNAs in PCV infection using the model mosquito Aedes aegypti. By combining small-RNA sequencing and bioinformatics analysis, differentially expressed miRNAs were determined. Our results indicated that PCV infection hardly affects host miRNAs. Out of 101 reported miRNAs of Ae. aegypti, only aae-miR-2940-5p had a significantly altered expression over the course of infection. However, further analysis of aae-miR-2940-5p revealed that this miRNA does not have any direct impact on PCV replication in vitro. Thus, overall the results suggest that PCV infection has a limited effect on the mosquito miRNA profile and therefore miRNAs may not play a significant role in the PCV-Ae. aegypti interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call