Abstract

Perovskite light-emitting diodes have been gaining attention in recent years due to their high efficiencies. Despite of the recent progress made in device efficiency, the operation mechanisms of these devices are still not well understood, especially the effects of ion migration. In this work, the role of ion migration is investigated by measuring the transient electroluminescence and current responses, with both the current and efficiency showing a slow response in a time scale of tens of milliseconds. The results of the charge injection dynamics show that the slow response of the current is attributed to the migration and accumulation of halide ions at the anode interface, facilitating hole injection and leading to a strong charge imbalance. Further, the results of the charge recombination dynamics show that the slow response of the efficiency is attributed to enhanced charge injection facilitated by ion migration, which leads to an increased carrier density favoring bimolecular radiative recombination. Through a combined analysis of both charge injection and recombination dynamics, we finally present a comprehensive picture of the role of ion migration in device operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.