Abstract

This report deals with the influence of particle temperature and velocity on the microstructure, mechanical properties and residual stress depth profile of plasma sprayed alumina coating. The coatings were produced by varying the particle temperature while maintaining a relatively fixed particle velocity, and vice versa. Residual stress profiles were acquired by measuring the stress in successive layers using X-ray Sin2ψ technique. A substantial increase in hardness and indentation modulus by 76% and 64%, respectively were observed with an increase in particle temperature. With an increase in velocity, coating porosity was found to decrease initially. However, at a high velocity, porosity again increased to a limited extent. The mechanical properties were found to depend strongly on porosity. An increase in particle temperature resulted in an increase in the tensile residual stress in the coatings. Moreover, partial recovery of the grit blasted compressive substrate occurred during spraying owing to an annealing effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.