Abstract

The current understanding on the oxygen transfer in activated sludge process is primarily developed based on two-phase systems, focusing only on oxygen transfer from air to water. However, this research demonstrates that activated sludge particles significantly impact oxygen transfer from air all the way to the microorganisms. Three bench-scale complete-mix activated sludge reactors, operated under the same influent loading and dissolved oxygen level but different solids retention times (SRTs), were used to develop oxygen transfer performance data as effects of different sludge property parameters. These reactors were also operated under batch modes to further validate the effect of nitrification reaction on oxygen transfer. Results indicate that high overall oxygen transfer efficiency (OTE) is associated with low mixed liquor viscosity, long SRT, and nitrification reaction. Further analyses suggest that low mixed liquor viscosity, which resulted from high sludge settleability or low settled volume of sludge, reduces the thickness of liquid films at all interfaces and the size of air bubbles. Long SRT results in high active nitrifier population and low specific extracellular polymeric substance (EPS). Nitrification reaction, which serves as the rate-limiting step for oxygen transfer, may increase the oxygen transfer driving force. High active nitrifier population also promotes direct air-sludge contact. All of these factors help facilitate oxygen transfer. This research provides a new approach to improve energy efficiency for wastewater treatment, which is to change the activated sludge property by adjusting treatment plant design and operational parameters. PRACTITIONER POINTS: High sludge settleability reduces viscosity therefore liquid film thickness. Long SRT increases active microorganism population and reduces specific EPS content. Nitrification reaction increases oxygen transfer driving force. Direct air-particle contact adds another pathway for oxygen transfer. Nitrification reaction is the rate-limiting step of the oxygen transfer process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.