Abstract

Modification of nanoparticle surfaces by adsorption or grafting of polymers allows fine control of hybrid materials properties for diverse applications. To obtain such a control, it is of paramount importance to understand the impact of the polymer structure on the nature and strength of its interaction with the nanoparticle. We investigated here a simple model of hybrid materials made of poly(N-isopropylacrylamide) of different molar masses and end groups interacting with gold surfaces. A series of poly(N-isopropylacrylamide) with number-average molar masses ranging from 3700 to 10000 g·mol–1 were synthesized by reversible addition–fragmentation chain transfer/macromolecular design by interchange of xanthates (RAFT/MADIX). The terminal xanthate group was then reduced into either a thiol or a hydrogen group. Quartz crystal microbalance adsorption/desorption experiments demonstrated that the polymer termini have a strong impact on the mechanism of polymer adsorption on flat gold surfaces. These differences in polymer structure have, in return, a strong influence on the colloidal stability and growth mechanism of nanoparticles when directly synthesized in polymer solution. For those properties, the effect of xanthate group compared very favorably to the conventional thiol moiety. Interestingly, the properties of nanohybrids were poorly affected by the molar mass of the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.