Abstract

Developing lithium-ion batteries with both high specific energy and high-power capability is a challenging task because of the necessity for meeting conflicting design requirements. We show that high-energy and high-rate capability can be achieved by using various π-conjugated p-dopable polymers as binders at the cathode and by lowering the mass fraction of all the inactive components of the cell. We report a lithium-metal battery that can deliver 320 Wh kg−1 at C/2 using a mass-efficient cell design. To this end, three conducting polymers with different ionic and electronic conductivities have been studied; dihexyl-substituted poly(3,4-propylenedioxythiophene) (PProDOT-Hx2), poly(3-hexylthiophene) (P3HT), and a new Random Copolymer (Hex:OE)(80:20) PProDOT. These conducting polymers are compared against a conventional polymer binder, PVDF. We show that under the mass-efficient conditions required for achieving high specific energy and rate capability, the conducting polymers play a crucial role by providing electronic and ionic conductivity, protection against rapid growth of solid electrolyte interphase (SEI), and access to a large electrochemically active surface area. Thus, the use of conducting polymers with appropriate molecular structure as binders opens a viable pathway to maximizing the specific energy and rate capability of lithium-ion battery cathodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call