Abstract

Abstract The Ries impact structure (southern Germany) formed ca. 15 Ma and is 22–26 km in diameter, making it one of the youngest and best-preserved mid-size terrestrial impact craters, yet the subsurface has not been studied with modern geophysics. We present the first high-resolution seismic profiles of the Ries impact structure; the profiles show discontinuous intra-basement reflectors and a central crater floor without a significant central topographic high. The inner crystalline ring sits adjacent to, not on top of, the crater terrace zone. These morphologies indicate that during the crater modification stage, the rebounding central uplift at Ries rose and then collapsed without the continued outward motion required to form a fully developed peak ring. The Ries impact structure may be best considered a transitional complex crater form between a central-peak crater and a peak-ring crater as documented on the Moon and other rocky planets. A series of high-amplitude, discontinuous, topographically influenced reflectors overlying the basement implies that the suevite within the crater basin was emplaced via lateral transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call