Abstract

Designing selective inhibitor of protein kinase B (PKB/Akt) is an area of intense research to develop potential anticancer drugs. As a general point of strategy, the peptide substrate-binding site only responds to a highly specific sequence of amino acids. Targeting the substrate-mimetic inhibitors to the peptide substrate-binding site has the potential for better selectivity. It is therefore of great interest to understand the peptide substrate binding mode of PKB, as well as its specificity and affinity for different substrate-mimetic inhibitors. In the present study, we used molecular dynamic simulations to better understand the interactions of the PKB substrate-binding site with the substrate-mimetic inhibitors. Our computational models successfully mirrored PKB’s selectivity for the substrate-mimetic inhibitors. Furthermore, the key residues interacting with the substrate-mimetic inhibitor were discussed by analysing the different interaction modes of these inhibitors, with different inhibitory potencies, binding to PKB and by comparing the different binding free energy contributions of corresponding residues around the binding pocket. The pharmacophoric requirements were then also summarised for the substrate-mimetic inhibitor binding to PKB. It is expected that this work will provide useful chemical or biochemical informatics for the design of novel and potent substrate-mimetic inhibitors of PKB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call