Abstract

Cropland is an essential strategic resource, for which landscape ecological security and multifunctionality evolution are related to regional stability and sustainable social development. However, few studies have explored the spatial heterogeneity of the coupling between the two from a multiregional and systematic perspective, and the interaction mechanisms have still not been thoroughly analyzed. In this study, a typical karst trough and valley area in the mountainous regions of southwest China was selected as the research object, and by establishing a multi-indicator evaluation system using a landscape pattern index, a multifunctional identification model, a coupled coordination model, and a geodetector model, the spatial variability in the evolutionary characteristics and the coupling and coordination of cropland landscape ecological security (CLES) and cropland multifunctionality (CM) in the mountainous regions of the southwest and their driving mechanisms were explored. The main results were as follows: (1) CLES in the mountainous areas of southwest China has undergone an evolutionary process of first declining and then slowly rising, with the characteristics of "fast declining in the high-value areas and slow rising in the low-value areas", while CM showed a spatial distribution of "high in the northwest and low in the northeast", with positive contributions originating from ecological functions. (2) Over the 20 years, the cropland coupling coordination degree (CCCD) values showed significant spatial heterogeneity, which was regionally expressed as ejective folds (EF) > TF (tight folds) > TLF (trough-like folds) > AF (anticlinorium folds). Low CCCD values were primarily found in the east, whereas high levels were primarily found in the west, with a rapidly diminishing trend. (3) There were differences in the driving mechanisms of CCDD in different landscapes, but GDP was still the determining factor and had a limiting effect. Hence, we call for the adoption of a "function over pattern" approach in areas with more development constraints and a "pattern over function" approach in areas with fewer development constraints. Ultimately, this study will contribute to the formation of a coupled cropland mechanism system described as the "multi-mechanisms drive, multi-elements integrated" system. In conclusion, this study can provide a better understanding of the relationship between cropland patterns and multifunctionality, which can help provide a basis for cropland conservation and landscape planning in similar mountainous areas and promote the achievement of sustainable agricultural development goals in the mountainous areas of southwest China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call