Abstract

Catalysts that are able to reduce carbon dioxide under mild conditions are highly sought after for storage of renewable energy in the form of a chemical fuel. This study describes a systematic kinetic and thermodynamic study of a series of cobalt and rhodium bis(diphosphine) complexes that are capable of hydrogenating carbon dioxide to formate under ambient temperature and pressure. Catalytic CO2 hydrogenation was studied under 1.8 and 20 atm of pressure (1:1 CO2/H2) at room temperature in tetrahydrofuran with turnover frequencies (TOF) ranging from 20 to 74 000 h–1. The catalysis was followed by 1H and 31P NMR spectroscopy in real time under all conditions to yield information about the rate-determining step. The cobalt catalysts displayed a rate-determining step of hydride transfer to CO2, while the hydrogen addition and/or deprotonation steps were rate limiting for the rhodium catalysts. Thermodynamic analysis of the complexes provided information on the driving force for each step of catalysis in term...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.