Abstract
Regiochemical aspects and the molecular mechanism of the [3 + 2] cycloaddition between nitrous oxide and conjugated nitroalkenes were evaluated on the basis of the wb97xd/6-311 + G(d) (PCM) computational study. It was found that, independently of the nature of the nitroalkene, all considered processes are realized via polar, single-step mechanisms. All attempts at the localization of hypothetical zwitterionic intermediates were unsuccessful. Additionally, the DFT computational study suggested that, in the course of the reaction, the formation of respective Δ2-4-nitro-4-R1-5-R2-1-oxa-2,3-diazolines was preferred from the kinetic point of view.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.