Abstract
The influence of the nature of the group 14 elements (E = Si, Ge, Sn) on the reactivity of (F5C2)3E-CH2-P(tBu)2 geminal frustrated Lewis pairs (FLPs) has been computationally explored by means of density functional theory calculations. To this end, the experimentally described activation reactions of CO2 and phenyl isocyanate have been investigated and compared to the analogous processes involving the corresponding B/P geminal FLP. It is found that the reactivity of these species is kinetically enhanced when going down the group 14 (Si < Ge < Sn). This trend of reactivity is quantitatively analyzed in detail by means of the activation strain model of reactivity in combination with the energy decomposition analysis method, which identify the interaction energy between the deformed reactants as the main factor controlling the reactivity of these group 14 containing geminal FLPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.