Abstract

The reaction mechanisms of carbon dioxide and cyclohexene oxide copolymerization catalyzed by four different zinc(II)-magnesium(II) (labeled as M1-M2) catalysts were computationally studied using density functional theory at the BP86-D3(BJ)/def2-TZVP/SMD//BP86-D3(BJ)/def2-SVP/SMD level of theory. The results showed that the most effective catalyst was the ZnMg system, in which poly(cyclohexene carbonate) was the preferred product, followed by the side product cis-cyclohexene carbonate. The QTAIM, NCI and ELF analysis performed to understand the role of metals in the reaction showed that ligands and substrates interact more strongly with zinc(II) centers compared to magnesium(II) centers. Furthermore, the Zn-I interaction at the M1 position was stronger than the Mg-I interaction at the same position. All these results indicate a synergism between the metals Zn and Mg, which makes Zn(II)Mg(II) the best combination for the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.