Abstract

Excited state energy transfer in disordered systems has attracted significant attention owing to the importance of this phenomenon in both artificial and natural systems that operate in electronically excited states. Of particular interest, especially in the context of organic electronics, is the dynamics of triplet excited states. Due to their weak coupling to the singlet manifold they can often act as low energy trapping sites and are therefore detrimental to device performance. Alternatively, by virtue of their long lifetime they can lead to enhanced diffusion lengths important for organic photovoltaics (OPV). Herein, we explore the triplet energy transfer mechanism from dichlorobenzene to thioxanthone in methanol solution. We rationalise previous experimental observations as arising from preferential population transfer into the lowest triplet state rather than the higher lying triplet state that is closer in energy. The reason for this is a delicate balance between the electronic coupling, reorganisation energy and the energy gap involved. The present results provide the understanding to potentially develop a hot exciton mechanism in materials for organic light emitting diodes (OLED) to achieve higher device efficiencies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.