Abstract

The mechanism of photomagnetism in copper octacyanomolybdate molecules is currently under debate. Contrary to the general belief that the photomagnetic transition occurs only due to a photoinduced electron transfer from the molybdenum to the copper atom, recent X-ray magnetic dichroic (XMCD) data clearly indicate that this phenomenon is associated at low temperature to a local low-spin-high-spin transition on the molybdenum atom. In this article we provide theoretical justification for these experimental facts. We show the first simulation of X-ray absorption (XAS) and magnetic circular dichroism (XMCD) spectra at the L(2,3) edges of molybdenum from the joint perspective of density functional theory (DFT) calculations and ligand field multiplet (LFM) theory. The description of electronic interactions seems mandatory for reproducing the photomagnetic state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call