Abstract

As a first step of designing O ptical-circuit-switched D ata C enters (ODC), physical topology design is critical as it determines the scalability and the performance limit of the entire ODC. However, prior works on ODC have not yet paid much attention to physical topology design, and the adopted physical topologies either scale poorly, or lack performance guarantee. We offer a mathematical foundation for the design and performance analysis of ODC physical topologies in this paper. We introduce a new performance metric β(G ) to evaluate the gap between a physical topology G and the ideal physical topology. We develop a coupling technique that bypasses a significant amount of computational complexity of calculating β(G). Using β(G ) and the coupling technique, we study four physical topologies that are representative of those in literature, analyze their scalabilities and prove their performance guarantees. Our analysis may provide new guidance for network operators to design better physical topologies for their ODCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.