Abstract
Jet fuel has been recognized as a potential alternative for traditional diesel engines because of its ability to reduce particulate matter (PM) emissions while retaining engine power output. In this study, the particulate formation process has been studied in detail using diesel/Jet A-1 blends with evenly staggered ratios. The number concentration of the accumulation mode particle decreases exponentially when additional Jet A-1 is introduced to the blends under 30% engine load, as more fuel and particle precursors are oxidized. Additionally, the comparison of PM emissions with pilot-main and single main two injection strategies is conducted to better understand the particle formation process. The phenomenon of ‘particle saturation’ of nucleation mode particles is observed using the pilot-main injection strategy. With these supporting findings, we strengthen the point that the pilot-injection strategy has the potential weaken the oxidation process during the combustion process. Furthermore, this research quantifies the impact of Jet A-1 on combustion and gas emission characteristics by extracting the change rate from the data. In general, Jet A-1 tends to delay the ignition and shorten the combustion duration. The results also reveal that the rise in NOx emissions is due to a higher proportion of premixed combustion, while the increase in HC emissions is attributed to a longer ignition delay and shorter combustion time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.