Abstract

Li-Sulfur (Li-S) batteries are emergent next-generation energy storage devices due to their very high specific energy density (∼2567Whg−1) but are limited by polysulfide dissolution issues. In this work, chemically synthesized sulfur containing non-carbonized metal organic framework (S-MOF) cathodes show initial specific capacities of 1476mAhg−1 stabilizing at ∼609mAhg−1 with almost no fade for over 200 cycles. Post-cycled separators of the S – MOF cathodes display complete absence of polysulfides after cycle 1, 20 and 200, respectively. It was identified that the occurrence of carbonate species in the MOF structure resulted in the formation of C-S bonded species causing retention of polysulfide at the electrode surface ensuring long-term stability. However, this observed capacity drop during the first 10 cycles is attributed to the oxidation of some of the infiltrated sulfur by the MOF as determined by electrochemical and X-ray photoelectron spectroscopy (XPS) analyses. Nevertheless, the negligible fade rate (0.0014% cycle−1) and complete prevention of polysulfide dissolution renders these cathodes most promising candidates for Li-S batteries. Understanding of this transformation behavior in sulfur-containing MOF is essential to engineer chemically-bonded host-structures capable of efficient polysulfide trapping, a key pathway to establishing novel platforms for achieving high power Li – S batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.