Abstract

By using electrical characterization and classical solid state semiconductor device theory, we demonstrate that the open circuit voltage (Voc) in organic solar cells based on non-intentional doped semiconductors is fundamentally limited by the built-in potential (Vbi) originated at a donor-acceptor abrupt (p-n++) heterojunction in case of selective contacts. Our analysis is validated using P3HT:PCBM devices fabricated in our research group. We also demonstrate that such a result can be generalized using data already reported in literature for fullerene-based solar cells. Finally, we show that the dependence of Voc on the device contacts can be understood in terms of the potential barriers formed by the Fermi level alignment of semiconductors at the heterojunction and at the Schottky junctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.