Abstract
The Electron Cyclotron Emission Imaging (ECEI) diagnostic was used to observe a finite-n interchange mode structure in the edge of negative triangularity shaped plasmas on DIII-D. At a small negative triangularity (δu = −0.2), the plasma is in the H-mode with ELMs that are triggered by a low-n interchange mode. At a larger negative triangularity (δu = −0.4) and low NBI power (2 MW), a dithering oscillation is observed that is triggered by a low-n interchange mode, whereas at higher NBI power (>2 MW), the edge reverts to L-mode and the low-n interchange mode is present continuously. In all cases, the edge pressure gradient is clamped when the interchange mode is present. It is concluded that the low-n interchange mode prevents the plasma from transitioning to H-mode at a large negative triangularity. This agrees with linear BOUT++ simulations which suggest that the interchange-type MHD can be a resistive ballooning mode whereby resistivity can significantly increase the finite-n ballooning mode growth rate. The absence of H-mode at large negative triangularity can, thus, be explained by the excitation of low-n pressure driven resistive ballooning modes in the plasma edge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.