Abstract

Multilevel operation is a topic of much current research in the field of phase-change memory materials, representing the most feasible method for increasing memory density beyond the ultimate scaling limits of the cell size. In this work, we present a combined experimental and ab initio molecular dynamics study of the formation of intermediate states during the crystallisation of Ge2Sb2Te5 (GST). A single intermediate resistance level is formed within a narrow voltage window, and simulations suggest this consists of microscopic crystallites embedded in a bulk amorphous phase. These findings are interpreted within the framework of classical nucleation theory, and a mechanism is proposed to explain the formation of the intermediate state. Our findings suggest that it may be difficult to obtain multiple intermediate states reliably during the crystallisation of Ge2Sb2Te5 and shed light on the fundamental limitations of using this method for multilevel programming.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.