Abstract
The function of ammonium salts on the epoxidation performance over Ti-BEA zeolite was investigated in detail. Experiments of alkene epoxidation, side reactions of epoxide and decomposition of H2O2 with or without ammonium salts were designed, and the UV-Vis spectroscopy was employed to analyze the structure of Ti-hydroperoxo species. It is revealed that the ammonia (or amines) dissociated from the ammonium salt would chelate with the linear Ti-η1(OOH) species and form a bridged Ti-η2(OOH)-R species, which is more stable, more weaker in epoxide adsorption and acidity as well. Therefore, side reactions and H2O2 decomposition would be suppressed, and both alkene conversion and epoxide selectivity would be promoted simultaneously. On the other hand, the excessive NH3•H2O (NH3/Ti>1) or NaOH bond with the Ti-η2(OOH)-R species and generate salt-like Ti-η2(OO)-M+ species, resulting in the deactivation of Ti active center. While for ammonium salts, e.g. NH4Cl, the limited dissociation degree along with the acidic environment help the Ti active center to maintain in highly active. In short, this work provides a practical Ti active center tuning method for Ti-BEA zeolite, as well as a thorough understanding of its Ti-hydroperoxo species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.