Abstract
The synthesis of 1,1-diborylalkanes from readily available alkenes is an appealing method. The density functional theory (DFT) method was employed to investigate the reaction mechanism of 1,1-diborylalkanes, which was synthesized from alkenes and a borane, and the reaction was catalyzed by a zirconium complex Cp2ZrCl2. The entire reaction is divided into two cycles: dehydrogenative boration to form vinyl boronate esters (VBEs) and hydroboration of VBEs. This article focuses on the hydroboration cycle and elaborates on the role of the reducing reagents in the equilibrium of self-contradictory reactivity (dehydrogenative boration and hydroboration). The H2 and HBpin pathways were investigated as the reducing reagents in the hydroboration process. The calculated results showed that it is more advantageous to use H2 as a reducing agent (path A). Furthermore, the σ-bond metathesis is the rate-determining step (RDS) with an energetic span of 21.4 kcal/mol. This is consistent with the self-contradictory reactivity balance proposed in the experiment. The reaction modes of the hydroboration process were also discussed. These analyses revealed the origin of selectivity in this boration reaction, in which the σ-bond metathesis of HBpin needs to overcome the strong interaction between HBpin and the Zr metal. Meanwhile, the origin of the selectivity of different positions of H2 is the interaction between the σ(H1-H2) → σ*(Zr1-C1) overlap and these findings have implications for catalyst design and application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.