Abstract
While Cu is the only electrocatalyst that converts CO2 into meaningful quantities of CH4 fuel, it requires significant overpotentials (onset potential of ∼−0.80 V vs RHE), decreasing energy conversion efficiencies. We report that Mo2C is capable of catalyzing CO2 into CH4 at low potentials (onset potential of ∼−0.55 V vs RHE), where Cu electrocatalysts do not convert CO2. This low-overpotential catalyst was first identified as a candidate by electronic structure calculations, which indicated the free energetics of CO hydrogenation to be more favorable than that on conventional transition metals such as Cu. Despite the low onset potential for CH4, the CH4 has a steep Tafel slope (∼−280 mV/dec), resulting in most of the current passing through the Mo2C electrocatalysts being utilized for the competitive hydrogen evolution reaction. We conducted a detailed theoretical analysis on the basis of density functional theory calculations, microkinetic analysis, and simulated Pourbaix diagrams to suggest the reasons...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.