Abstract

Carbon nanotube sheets exhibiting extremely low heat capacity have enabled the development of thermoacoustic projectors (TAPs) for a wide range of frequencies (1- 106 Hz). The sound pressure level of carbon nanotube (CNT) based TAPs is proportional to the frequency, resulting in a reduced performance at low frequencies. Hence, there is a need to determine the governing parameters of TAPs that can be used to increase performance at low frequencies. A comprehensive, validated model is presented, involving structure-fluid-acoustic interactions, which sheds light on the physical behavior of CNT-based TAPs. The theoretical and numerical model incorporates all the controlling steps, from input electrical power to vibroacoustic wave generation in an outer fluid media. Using this model, the impact of the governing parameters on TAP performance has been studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.