Abstract
Spectral analysis of electron spin resonance (ESR) is a powerful technique for various investigations including characterization of spin systems, measurements of spin concentration, and probing spin dynamics. The nitrogen-vacancy (NV) center in diamond is a promising magnetic sensor enabling improvement of ESR sensitivity to the level of a single spin. Therefore, understanding the nature of the NV-detected ESR (NV-ESR) spectrum is critical for applications to nanoscale ESR. Within this work, we investigate the linewidth of NV-ESR from single substitutional nitrogen centers (called P1 centers). NV-ESR is detected by a double electron-electron resonance (DEER) technique. By studying the dependence of the DEER excitation bandwidth on the NV-ESR linewidth, we find that the spectral resolution is improved significantly and eventually limited by inhomogeneous broadening of the detected P1 ESR. Moreover, we show that the NV-ESR linewidth can be as narrow as 0.3 MHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.