Abstract

Spectral analysis of electron spin resonance (ESR) is a powerful technique for various investigations including characterization of spin systems, measurements of spin concentration, and probing spin dynamics. The nitrogen-vacancy (NV) center in diamond is a promising magnetic sensor enabling improvement of ESR sensitivity to the level of a single spin. Therefore, understanding the nature of the NV-detected ESR (NV-ESR) spectrum is critical for applications to nanoscale ESR. Within this work, we investigate the linewidth of NV-ESR from single substitutional nitrogen centers (called P1 centers). NV-ESR is detected by a double electron-electron resonance (DEER) technique. By studying the dependence of the DEER excitation bandwidth on the NV-ESR linewidth, we find that the spectral resolution is improved significantly and eventually limited by inhomogeneous broadening of the detected P1 ESR. Moreover, we show that the NV-ESR linewidth can be as narrow as 0.3 MHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call