Abstract

It has previously been demonstrated in both simulation and experiment that well aligned remote focusing microscopes exhibit residual spherical aberration outside the focal plane. In this work, compensation of the residual spherical aberration is provided by the correction collar on the primary objective, controlled by a high precision stepper motor. A Shack-Hartmann wave front sensor is used to demonstrate the magnitude of the spherical aberration generated by the correction collar matches that predicted by an optical model of the objective lens. The limited impact of spherical aberration compensation on the diffraction limited range of the remote focusing system is described through a consideration of both on-axis and off-axis comatic and astigmatic aberrations, which are an inherent feature of remote focusing microscopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call