Abstract

Knots or blobs observed in astrophysical jets are commonly interpreted as shock waves moving along them. Long time observations of the HST-1 knot inside the jet of the galaxy M87 have produced detailed multi-wavelength light curves. In this article, we model these light curves using the semi-analytical approach developed by Mendoza et al. (2009). This model was developed to account for the light curves of working surfaces moving along relativistic jets. These working surfaces are generated by periodic oscillations of the injected flow velocity and mass ejection rates at the base of the jet. Using genetic algorithms to fit the parameters of the model, we are able to explain the outbursts observed in the light curves of the HST-1 knot with an accuracy greater than a 2 sigma statistical confidence level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.