Abstract

The rapid and efficient conversion of carbon dioxide (CO2) to carbon monoxide (CO) is an ongoing challenge. Catalysts based on iron-porphyrin cores have emerged as excellent electrochemical mediators of the two proton + two electron reduction of CO2 to CO, and many of the design features that promote function are known. Of those design features, the incorporation of Brønsted acids in the second coordination sphere of the iron ion has a significant impact on catalyst turnover kinetics. The Brønsted acids are often in the form of hydroxyphenyl groups. Herein, we explore how the acidity of an ancillary 2-hydroxyphenyl group affects the performance of CO2 reduction electrocatalysts. A series of meso-5,10,15,20-tetraaryl porphyrins were prepared where only the functional group at the 5-meso position has an ionizable proton. A series of cyclic voltammetry (CV) experiments reveal that the complex with -OMe positioned para to the ionizable -OH shows the largest CO2 reduction rate constants in acetonitrile solvent. This is the least acidic -OH of the compounds surveyed. The turnover frequency of the -OMe derivative can be further improved with the addition of 4-trifluoromethylphenol to the solution. In contrast, the iron-porphyrin complex with -CF3 positioned opposite the ionizable -OH shows the smallest CO2 reduction rate constants, and its turnover frequency is less enhanced with the addition of phenols to the reaction solutions. The origin of this effect is rationalized based on kinetic isotope effect experiments and density functional calculations. We conclude that catalysts with weaker internal acids coupled with stronger external acid additives provide superior CO2 reduction kinetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call