Abstract

The return of vegetation to mined lands often requires broadcast seeding of diverse native seed mixes. However, seeds are highly adapted to germination windows with specific hydrothermal thresholds that maximize the likelihood of seedling survival, and post‐mining landscapes typically offer markedly different hydrothermal conditions than pre‐disturbance ecosystems. According to niche theory, generalist species should exhibit broader hydrothermal performance niches than specialist taxa, which may influence the success of recruitment from seeds in post‐mining ecological restoration. To test this assumption, the impact of hydrothermal stress (incubation temperature (10–30°C) and osmotic potential (−0.8 to 0 MPa)) on the time to 50% germination (t50) and maximum germination (Gmax) was compared between two narrow‐range species of conservation concern (Acacia woodmaniorum and A. karina) restricted to mining‐impacted Banded Ironstone Formations (BIF) and three broadly distributed congenerics (A. assimilis, A. exocarpoides, and A. ramulosa). The hydrothermal germination niches of the study species were broadly congruent with hydrothermal conditions of their habitats. The two range‐restricted taxa were more tolerant of hydrothermal stress compared to the three widely distributed taxa, suggesting that tolerance of greater hydrothermal stress by both range‐restricted Acacia species is likely to be adaptive to establishment in uncontested niche space. Complex interactions between thermal and water stress suggest these environmental gradients may shape the germination niche as well as patterns of plant diversity in BIF ecosystems. This study highlights the importance of quantifying interactions between niche dimensions and their implications for species performance, which will aid future restoration efforts for micro‐endemic species impacted by mining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.