Abstract
A detailed computational characterization of the one-photon absorption spectrum of a 2-((E)-2-[2,2']-bithiophenyl-5-yl-vinyl)-1-methyl-quinolinium cation in acetonitrile solution is presented. The main physico-chemical effects (solvation, vibronic progression) affecting the band position and shape are progressively introduced in the computational model, highlighting their relative role in the spectral profile. The reported results underline how an accurate reproduction of the experimental spectrum can only be obtained by going beyond oversimplified methods. Moreover, the deep interplay between the solvent effects and nuclear rearrangements permits the negative solvatochromism exhibited by hypsochromic molecules to be explained. This illustrates the potential of the computational investigation, which can shed light on the information hidden in experimental spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.