Abstract

The oxide garnet Y3Al5O12 (YAG), when a few percent of the activator ions Ce3+ substitutes for Y3+, is a luminescent material widely used in phosphor-converted white lighting. However, fundamental questions surrounding the defect chemistry and luminescent performance of this material remain, especially in regard to the nature and role of vibrational dynamics. Here, we provide a complete phonon assignment of YAG and establish the general spectral trends upon variation of the Ce3+ dopant concentration and temperature, which are shown to correlate with the macroscopic luminescence properties of Y3–xCexAl5O12. Increasing the Ce3+ concentration and/or temperature leads to a red-shift of the emitted light, as a result of increased crystal-field splitting due to a larger tetragonal distortion of the CeO8 moieties. Decreasing the Ce3+ concentration or cosubstitution of smaller and/or lighter atoms on the Y sites creates the potential to suppress thermal quenching of luminescence because the frequencies of phonon ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call