Abstract
The perovskite structured oxides of composition ABO3 are considered strong candidates for solid-state electrolytes in all-solid-state batteries due to their chemical and structural flexibility. However, further improvements must be made before they become commercially viable, and this requires a clear understanding of the structure-property relationships. In this study, the local structure of the perovskite sodium-ion solid electrolyte series Na1/2−xLa1/2−xSr2xZrO3 (NLSZ, x = 14, 16, 18, 116) was investigated via neutron total scattering. Small-box modelling against the neutron pair distribution function with the orthorhombic Pbnm structure showed local-scale features that deviate from the average structure. Big-box modelling revealed significant differences between the bonding configurations of the different A-site cations, which impacts the ionic conductivity of the material. This study demonstrates how understanding local-scale disorder is important for tuning the structure-property relationships of inorganic solid-state electrolyte materials in sustainable battery technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.