Abstract
Despite the rapid progress demonstrated in the efficiency of Perovskite light-emitting diodes (PeLEDs) in the past few years, ion migration has challenged the practical applications of these devices with undesirable hysteresis and degradation effect. Mobile ions in PeLEDs induced many unique and fast transient phenomena occurring on the time scale of microseconds to seconds and it is still far from clear how the underlying physical mechanism of ion motion-induced variation relates to the device performance. Therefore, in this work, we employ an ionic Drift–Diffusion Model (DDM) to evaluate measuring transient current response in a time scale of sub-seconds. The results show that spatial redistribution of ions within the perovskite results in dynamic electric field variation, which in turn, affects charge carrier injection and distribution. Moreover, the time delay between anion and cation migration leads to an unequal rate of charge carrier injection, hence the multi-stage behavior of the current–time response. It is also realized that the potential barrier of charge injection due to cation and anion accumulation at perovskite interfaces with electron and hole transporting layers reduces. Therefore, the facilitation of charge injection favors radiative recombination, and improved IQEs are expected at higher ion densities. It is found that the current–time response of the device gives beneficial information on cation and anion migration time scales. Choosing an appropriate scan rate in accordance with cation-related slow migration time is the first step to achieving reliable measurement procedures and hysteresis-free PeLED.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.