Abstract
An obstacle to effective teaming between humans and AI is the agent’s "black box" design. AI explanations have proven benefits, but few studies have explored the effects that explanations can have in a teaming environment with AI agents operating at heightened levels of autonomy. We conducted two complementary studies, an experiment and participatory design sessions, investigating the effect that varying levels of AI explainability and AI autonomy have on the participants’ perceived trust and competence of an AI teammate to address this research gap. The results of the experiment were counter-intuitive, where the participants actually perceived the lower explainability agent as both more trustworthy and more competent. The participatory design sessions further revealed how a team’s need to know influences when and what teammates need explained from AI teammates. Based on these findings, several design recommendations were developed for the HCI community to guide how AI teammates should share decision information with their human counterparts considering the careful balance between trust and competence in human-AI teams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.