Abstract

Although the increasing trend of sensor signal with decreasing oxygen partial pressure was observed quite early, the underlying mechanism is still elusive, which is a hindrance to accurate gas detection under varying oxygen partial pressure. In this work, a sensing model based on previous experimental and theoretical results is proposed, in which the O2- species is determined to be the main oxygen species because O- species has not been observed by direct spectroscopic studies. On this basis, combined with the band bending of SnO2 at different oxygen partial pressures, the functional relationship between the surface electron concentration, oxygen partial pressure, and reducing gas concentration is established, which includes three forms corresponding to the depletion layer, accumulation layer, and flat band. In the depletion layer case, the variation of the sensor resistance to different concentrations of CO and oxygen can be well fitted with our function model. Besides, this model predicts that the response of sensors will no longer maintain the increasing trend in an extremely hypoxic atmosphere but will decrease and approach 1 with the background oxygen content further going down to 0.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.