Abstract

Abstract This study investigates the impacts of the Indian Ocean on El Nino–Southern Oscillation (ENSO) variability through numerical simulations with a coupled atmosphere–ocean general circulation model, composite analyses with the coupled model output, and simple atmosphere model experiments with specified sea surface temperature (SST) forcing. It is found that, when the Indian Ocean is decoupled from the atmosphere, the ENSO variability in the coupled model is significantly reduced. Conditional SST distributions indicate that the warm (cold) ENSO state is stronger and occurs more frequently when the Indian Ocean SST in summer is relatively cold (warm), whereas it is weaker and occurs less frequently when the Indian Ocean is relatively warm (cold). The impacts of the Indian Ocean are suggested by a comparison of SST composites under warm, normal, and cold Indian Ocean SST conditions in the developing stage of ENSO. It is demonstrated that the Indian Ocean affects the ENSO variability through modulating ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.