Abstract

Abstract The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. However, soil moisture initialization approaches in coupled models remain quite diverse in terms of their complexity and observational roots, while assessment using bulk forecast statistics can be simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes a wide range of currently used initialization approaches, including soil moisture derived from “off the shelf” products such as atmospheric models and land data assimilation systems, high-resolution land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and temporal dynamics when compared against high-resolution land surface model and in situ soil moisture estimates. Case studies are analyzed using the local land–atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land versus atmospheric initial conditions in an integrated, process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.