Abstract
The current uncertainties in the reactivity and atmospheric persistence of particle-associated chemicals present a challenge for the prediction of long-range transport and deposition of emerging chemicals such as organophosphate flame retardants, which are ubiquitous in the global environment. Here, the OH-initiated heterogeneous oxidation kinetics of organophosphate flame retardants (OPFRs) coated on inert (NH4)2SO4 and redox-active FeSO4 particles were systematically determined as a function of relative humidity (RH). The derived reaction rate constants for the heterogeneous loss of tricresyl phosphate (TCP; kTCP) and tris(2-butoxyethyl) phosphate (TBEP; kTBEP) were in the range of (2.69-3.57) × 10-12 and (3.06-5.55) × 10-12 cm3 molecules-1 s-1, respectively, depending on the RH and coexisting Fe(II) content. The kTCP (coated on (NH4)2SO4) was relatively constant over the investigated RH range while kTBEP was enhanced by up to 19% with increasing RH. For both OPFRs, the presence of Fe(II) enhanced their k by up to 53% over inert (NH4)2SO4. These enhancement effects (RH and Fe(II)) were attributed to fundamental changes in the organic phase state (higher RH lowered particle viscosity) and Fenton-type chemistry which resulted in the formation of reactive oxygen species, respectively. Such findings serve to emphasize the importance of ambient RH, the phase state of particle-bound organics in general, and the presence of coexisting metallic species for an accurate description of the degradation kinetics and aging of particulate OPFRs in models used to evaluate their atmospheric persistence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.