Abstract

Most ordinary differential equation (ODE) models used to describe biological or physical systems must be solved approximately using numerical methods. Perniciously, even those solvers that seem sufficiently accurate for the forward problem, i.e. for obtaining an accurate simulation, might not be sufficiently accurate for the inverse problem, i.e. for inferring the model parameters from data. We show that for both fixed step and adaptive step ODE solvers, solving the forward problem with insufficient accuracy can distort likelihood surfaces, which might become jagged, causing inference algorithms to get stuck in local 'phantom' optima. We demonstrate that biases in inference arising from numerical approximation of ODEs are potentially most severe in systems involving low noise and rapid nonlinear dynamics. We reanalyse an ODE changepoint model previously fit to the COVID-19 outbreak in Germany and show the effect of the step size on simulation and inference results. We then fit a more complicated rainfallrun-off model to hydrological data and illustrate the importance of tuning solver tolerances to avoid distorted likelihood surfaces. Our results indicate that, when performing inference for ODE model parameters, adaptive step size solver tolerances must be set cautiously and likelihood surfaces should be inspected for characteristic signs of numerical issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.