Abstract

As potential low-cost alternatives of traditional bulk HgCdTe crystals, HgTe colloidal quantum dots (CQDs) synthesized through reactions between HgCl2 and trioctylphosphine-telluride in hot oleylamine have shown promising performances in mid-wave infrared photodetectors. Tetrapodic or tetrahedral HgTe CQDs have been obtained by tuning the reaction conditions such as temperature, reaction time, concentrations, and ratios of the two precursors. However, the principles governing the growth dynamics and the mechanism behind the transitions between tetrapodic and tetrahedral HgTe CQDs have not been sufficiently understood. In this work, synthesis of HgTe CQDs through bilateral injection is introduced to study the growth mechanism. It suggests that tetrahedral HgTe CQDs usually result from the breaks of tetrapodic HgTe CQDs after their legs grow thick enough. The fundamental factor determining whether the growth makes their legs longer or thicker is the effective concentration of the Te precursor during the growth, rather than temperature, Hg-rich environment, or reactivity of precursors. A chemical model is proposed to illustrate the principles governing the growth dynamics, which provides valuable guidelines for tuning the material properties of HgTe CQDs according to the needs of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call