Abstract

This review gathers recent findings in biophysics that shed light on the biological principle of self-organization, spanning from molecules to more complicated systems with higher information processing capacity. The focus is on "feedback loops" from information and matter to an exchange component with a more fundamental meaning than "cybernetic regulation" and "maintenance of homeostasis". This article proposes that electric and electromagnetic forces are the most important mediators over large distances. Field-like mediation is distinguished from cell-to-cell communication by special electric- or ion-guiding mechanisms that create additional pathways to the "classical" mediators such as nerve conduction or blood flow. Resonance phenomena from phonons and photons in the visible range will be discussed in relation to organelles, cytoskeletal elements and molecules. In this context, the aqueous surrounding of molecules and cells is an important aspect. Many of these phenomena are caused by quantum physics, such as the tunneling of electrons in enzymes or in other coherent working systems. This suggests that quantum information processing is also spread over large-scale areas of an organism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.