Abstract
Photoswitchable molecules can control the activity and functions of biomolecules by triggering conformational changes. However, it is still challenging to fully understand such fast-triggering conformational evolution from nonequilibrium to equilibrium distribution at the molecular level. Herein, we successfully simulated the unfolding of the FK-11 peptide upon the photoinduced trans-to-cis isomerization of azobenzene based on the Markov state model. We found that the ensemble of FK-11 contains five conformational states, constituting two unfolding pathways. More intriguingly, we observed the microsecond-scale conformational propagation of the FK-11 peptide from the fully folded state to the equilibrium populations of the five states. The computed CD spectra match well with the experimental data, validating our simulation method. Overall, our study not only offers a protocol to study the photoisomerization-induced conformational changes of enzymes but also could orientate the rational design of a photoswitchable molecule to manipulate biological functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.