Abstract

Characterization, modeling, and development of cryo-temperature CMOS technologies (cryo-CMOS) have significantly progressed to help overcome the interconnection bottleneck between qubits and the readout interface in quantum computers. Nevertheless, available compact models still fail to predict the deviation of 1/f noise from the expected linear scaling with temperature ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${T}$ </tex-math></inline-formula> ), referred to as “excess 1/f noise,” observed at cryogenic temperatures. In addition, 1/f noise represents one of the main limiting factors for the decoherence time of qubits. In this article, we extensively characterize low-frequency noise on commercial 28-nm CMOS and on research-grade Ge-channel MOSFETs at temperatures ranging from 370 K down to 4 K. Our investigations exclude electron heating and bulk dielectric defects as possible causes of the excess 1/f noise at low temperatures. We show further evidence for a strong correlation between the excess 1/f noise and the saturation of the subthreshold swing (SS) observed at low temperatures. The most plausible cause of the excess noise is found in band tail states in the channel acting as additional capture/emission centers at cryogenic temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.