Abstract

Redox-active organic molecules have attracted much attention as alternatives to transition-metal-based electrodes for lithium-ion batteries due to their low cost and large abundance. However, the relatively low cycling stability still prevents some of the most promising molecules to be used as lithium-ion electrodes. Herein, we used 1,4,5,8-naphthalene diimide (NDI) as a model molecule to systematically investigate its intrinsic electrochemical property, including its electrolyte compatibility, maximum capacity, cycling stability, and rate capability in different organic electrolytes. Extensive physicochemical characterization, electrochemical measurement, and density function theory (DFT) calculation together show that the electrode–electrolyte interaction is the key factor determining its specific capacity and cycling stability. With a proper selection of electrolytes, NDI molecule, which was considered to be not stable for lithium storage, can achieve near theoretical capacity (based on two-electron re...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.