Abstract

The lithium-rich layered oxide materials (LLOs) have attracted much attention as candidates for the next generation of LIBs because of their high voltage and high capacity, which are still poorly understood. In this study, the origin of high voltage and high capacity of LLOs has been comprehensively investigated through first-principles calculations. It is revealed that due to the asymmetric oxidation behavior of Li2MnO3/LiMO2 interface, the transition-metal–oxygen (TMO) layer of Li2MnO3 phase in Li-rich materials gains more electrons from Li layer than that in pure Li2MnO3, which results in the stronger hybrid between Mn-3d and O-2p states enhancing the activity of Mn in Li2MnO3. Moreover, the deintercalated Li-rich models possess smaller spacing than pure LiMO2, which reflects stronger electrostatic interaction between TMO and Li layers. The two factors are both beneficial to the high voltage of the Li-rich materials. However, the asymmetric interface also results in the increase of electronic states of...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.