Abstract

AbstractAn ethylene carbonate‐free electrolyte composed of 1 M lithium bis(fluorosulfonyl) imide (LiFSI) in sulfolane (SL) is studied here for LiNi0.5Mn1.5O4‐graphite full‐cells. An important focus on the evaluation of the anodic stability of the SL electrolyte and the passivation layers formed on LiNi0.5Mn1.5O4 (LNMO) and graphite is being analysed along with intermittent current interruption (ICI) technique to observe the resistance while cycling. The results show that the sulfolane electrolyte shows more degradation at higher potentials unlike previous reports which suggested higher oxidative stability. However, the passivation layers formed due to this electrolyte degradation prevents further degradation. The resistance measurements show that major resistance arises from the cathode. The pressure evolution during the formation cycles suggests that there is lower gas evolution with sulfolane electrolyte than in the conventional electrolyte. The study opens a new outlook on the sulfolane based electrolyte especially on its oxidative/anodic stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call