Abstract

Prolonged exposure to spaceflight conditions results in a battery of physiological changes, some of which contribute to sensorimotor and neurovestibular deficits. Upon return to Earth, functional performance changes are tested using the Functional Task Test (FTT), which includes an obstacle course to observe post-flight balance and postural stability, specifically during turning. The goal of this study was to quantify changes in movement strategies during turning events by observing the latency between head-and-trunk coordinated movements. It was hypothesized that subjects experiencing neurovestibular adaptations would exhibit head-to-trunk locking (‘en bloc’ movement) during turning, exhibited by a decrease in latency between head and trunk movement. FTT data samples were collected from 13 ISS astronauts and 26 male 70-day head down tilt bed rest subjects, including bed rest controls (10 BRC) and bed rest exercisers (16 BRE). Samples were analyzed three times pre-exposure, immediately post-exposure (0 or 1-day post) and 2–3 times during recovery from the unloading environment. Two 3D inertial measurements units (XSens MTx) were attached to subjects, one on the head and one on the upper back. This study focused primarily on the yaw movements about the subject׳s center of rotation. Time differences (latency) between head and trunk movement were averaged across a slalom obstacle portion, consisting of three turns (approximately three 60° turns). All participants were grouped as ‘decreaser’ or ‘increaser’, relating to their change in head-to-trunk movement latency between pre- and post-environmental adaptation measures. Spaceflight unloading (ISS) showed a bimodal response between the ‘increaser’ and ‘decreaser’ group, while both bed rest control (BRC) and bed rest exercise (BRE) populations showed increased preference towards a ‘decreaser’ categorization, displaying greater head–trunk locking. It is clear that changes in movement strategies are adopted during exposure to an unloading environment. These results further the understanding of vestibular–somatosensory convergence and support the use of bed rest as an exclusionary model to better understand sensorimotor changes in spaceflight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.