Abstract

The structures of electrode meso-macropore and the solvent polarity are the crucial factors dominating the performance of the electric double layer capacitors (EDLCs), but their impacts are usually tangled and difficult to decouple and quantitate. Here the effects of electrode meso-macropore structure and solvent polarity on the specific capacitance of an EDLC are quantitatively investigated using a steady-state continuum model. The simulation results indicate the specific capacitances are significantly affected by the meso-macropore surface structure. The specific capacitances significantly decrease for both convex surface structures but obviously increase for both concave surface structures, with the increase of curvature radius from 1 to 20 nm. As for solvents, the polar solvent with high saturated dielectric permittivity improves the capacitance performance. Moreover, the electrode meso-macropore structure is of more concern compared with solvent polarity when aiming at enhancing the specific capacitance. These results provide fundamentals for the rational design of porous electrodes and polar electrolytes for EDLCs. © 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd.. All rights reserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call