Abstract

We present results highlighting the roles of dipolar interactions in affecting thermodynamics of diblock copolymer melts. Field theoretic methods and coarse-grained molecular dynamics (MD) simulations are used to understand the effects of dipolar interactions among copolymer segments. In particular, the effects of dipolar interactions on disorder-lamellar transition and domain spacing of the lamellar morphology are studied. It is shown that dipolar interactions stabilize the lamellar morphology over the disordered phase. Furthermore, the domain spacing for the lamellar morphology is predicted to increase with an increase in disparity between dipole moments of two kinds of monomers in the diblock or equivalently a mismatch in the dielectric constant of homopolymers forming the diblock. MD simulations reveal that additional orientational effects resulting from the anisotropic nature of the dipolar interaction potential are significant for highly polar monomers. In contrast, the field theoretic models based on orientationally averaged dipolar interaction potentials, such as those used in this work, fail to capture the effects of orientational correlations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.